Torsion of rational elliptic curves over cubic fields

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Torsion of Rational Elliptic Curves over Cubic Fields

Let E be an elliptic curve defined over Q. We study the relationship between the torsion subgroup E(Q)tors and the torsion subgroup E(K)tors, where K is a cubic number field. In particular, we study the number of cubic number fields K such that E(Q)tors ̸= E(K)tors.

متن کامل

Torsion of elliptic curves over cubic fields

Although it is not known which groups can appear as torsion groups of elliptic curves over cubic number fields, it is known which groups can appear for infinitely many non-isomorphic curves. We denote the set of these groups as S. In this paper we deal with three problems concerning the torsion of elliptic curves over cubic fields. First, we study the possible torsion groups of elliptic curves ...

متن کامل

No 17-torsion on elliptic curves over cubic number fields

Consider, for d an integer, the set S(d) of prime numbers p such that: there exists a number field K of degree d, an elliptic curve E overK, and a point P in E(K) of order p. It is a well-known theorem of Mazur, Kamienny, Abramovich and Merel that S(d) is finite for every d; moreover S(1) and S(2) are known. In [7], we tried to answer a question of Kamienny and Mazur by determining S(3), and we...

متن کامل

On the torsion of rational elliptic curves over quartic fields

Let E be an elliptic curve defined over Q and let G = E(Q)tors be the associated torsion subgroup. We study, for a given G, which possible groups G ⊆ H could appear such that H = E(K)tors, for [K : Q] = 4 and H is one of the possible torsion structures that occur infinitely often as torsion structures of elliptic curves defined over quartic number fields. Let K be a number field, and let E be a...

متن کامل

Algebra Seminar Torsion subgroups of rational elliptic curves over the compositum of all cubic fields

Abstract: Let E/Q be an elliptic curve and let Q(3∞) denote the compositum of all cubic extensions of Q. While the group E(3∞) is not finitely generated, one can show that its torsion subgroup is finite; this holds more generally for any Galois extension of Q that contains only finitely many roots of unity. I will describe joint work with Daniels, Lozano-Robledo, and Najman, in which we obtain ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Rocky Mountain Journal of Mathematics

سال: 2016

ISSN: 0035-7596

DOI: 10.1216/rmj-2016-46-6-1899